organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Methyl-1-phenylsulfonyl-1*H*-indol-3-yl)methanol

G. Chakkaravarthi,^a* V. Dhayalan,^b A. K. Mohanakrishnan^b and V. Manivannan^c

^aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: chakkaravarthi_2005@yahoo.com

Received 6 December 2007; accepted 28 January 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.241; data-to-parameter ratio = 21.4.

In the title compound, $C_{16}H_{15}NO_3S$, the plane of the phenyl ring forms a dihedral angle of 80.37 (8)° with the indole ring system. The crystal packing is stabilized by weak $O-H\cdots O$ hydrogen bonds which link the molecules into infinite chains along the *a* axis of the crystal.

Related literature

For biological activity, see: Nieto *et al.* (2005); Pomarnacka & Kozlarska-Kedra (2003). For the structure of closely related compounds, see: Chakkaravarthi *et al.* (2007); Liu *et al.* (2007).

Experimental

Crystal data	
C ₁₆ H ₁₅ NO ₃ S	a = 8.3780 (4) Å
$M_r = 301.35$	b = 9.6969 (5) Å
Triclinic, P1	c = 9.9630 (4) Å

$\alpha = 78.718 \ (2)^{\circ}$	
$\beta = 65.347 \ (3)^{\circ}$	
$\gamma = 78.884 \ (2)^{\circ}$	
V = 715.77 (6) Å ³	
Z = 2	

Data collection

14857 measured reflections
4088 independent reflections
3267 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.021$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 191 parameters $wR(F^2) = 0.241$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3}$ 4088 reflections $\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$

Mo *K* α radiation $\mu = 0.23 \text{ mm}^{-1}$

 $0.22 \times 0.18 \times 0.16 \text{ mm}$

T = 295 (2) K

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H3\cdots O2^i$	0.82	2.59	3.276 (5)	142
Summatry and a (i)	v 1 u #			

Symmetry code: (i) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2066).

References

- Bruker (2004). APEX2. Version 1.0–27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, 03564.
- Liu, Y., Gribble, G. W. & Jasinski, J. P. (2007). Acta Cryst. E63, 0738-0740. Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J.
- Med. Chem. 40, 361–369.
- Pomarnacka, E. & Kozlarska-Kedra, I. (2003). *Il Farmaco*, **58**, 423–429.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Sheldrick, G. M. (2008). Acta Cryst. A04, 112–1.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o542 [doi:10.1107/S1600536808003024]

(2-Methyl-1-phenylsulfonyl-1*H*-indol-3-yl)methanol

G. Chakkaravarthi, V. Dhayalan, A. K. Mohanakrishnan and V. Manivannan

Comment

In continuation of our studies of benzenesulfonamide derivatives, which are known to exhibit antibacterial (Nieto *et al.*, 2005), anticancer and anti - HIV (Pomarnacka & Kozlarska-Kedra, 2003) activities, we determined the crystal structure of the title compound, (I). The geometric parameters of the molecule of (I) (Fig. 1) agree well with those reported for similar structures (Chakkaravarthi *et al.*, 2007; Liu *et al.*, 2007).

The plane of the phenyl ring forms the dihedral angle of $80.37 (8)^\circ$ with the indole ring system. The N1—S1—C1 plane is also approximately orthogonal to indole (dihedral angle 79.21 (6)°) and makes an angle of 57.86 (11)° with the phenyl plane.

The crystal packing of (I) is stabilized by a rather weak O—H···O bonds which link the molecules into the infinite chains along the *x*-axis of the crystal (Fig. 2, Table 2).

Experimental

Benzenesulfonyl chloride (7.75 ml, 43.9 mmol), 60% NaOH solution (60 g in 100 ml), along with tetrabutylammonium hydrogensulfate (1.5 g) were added to the solution of 2-methylindole-3-carboxaldehyde (8.0 g, 50.3 mmol) in distilled benzene (200 ml). The two-phase system thus formed was stirred at room temperature for 2 h. It was then diluted with water (200 ml) and the organic layer was separated. The aqueous layer was extracted with benzene (two times by 30 ml). The combined organic layer was dried (Na₂SO₄). The benzene was then completely removed and the crude product was recrystallized from methanol to get 1-phenylsulfonyl-2-methylindole-3-carboxaldehyde.

NaBH₄ (2.97 g, 78.60 mmol) was added slowly to a solution of 1-phenylsulfonyl-2-methylindole-3-carboxaldehyde (3 g, 13.10 mmol) in THF (30 ml). The reaction mixture was stirred at room temperature for 3 hrs. Dilute HCl (10%) was cautiously added until the solution became acidic. After most of the THF was removed *in vacuo*, the solution was extracted with dichloromethane and dried (MgSO₄); the solvent was then removed under vacuo. The crude product thus obtained was recrystallized from 10% ethyl acetate/n-hexane.

Refinement

H atoms were positioned geometrically and refined using riding model approximation with C—H = 0.93 Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH₂, C—H = 0.96 Å and $U_{iso}(H) = 1.5Ueq(C)$ for CH₃ and O—H = 0.82 Å and $U_{iso}(H) = 1.5Ueq(O)$ for OH. The hydroxyl O3 atom showed rather high thermal displacement parameters, however the attempts to introduce an alternative position and refine disordered model proved unsuccessful.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The packing of (I), viewed down the c axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.

(2-Methyl-1-phenylsulfonyl-1H-indol-3-yl)methanol

Crystal data C₁₆H₁₅NO₃S Z = 2 $M_r = 301.35$ $F_{000} = 316$ $D_{\rm x} = 1.398 {\rm Mg m}^{-3}$ Triclinic, PT Mo Kα radiation Hall symbol: -P 1 $\lambda = 0.71073 \text{ Å}$ a = 8.3780 (4) ÅCell parameters from 8443 reflections $\theta = 2.7 - 26.2^{\circ}$ *b* = 9.6969 (5) Å c = 9.9630 (4) Å $\mu = 0.23 \text{ mm}^{-1}$ T = 295 (2) K $\alpha = 78.718 \ (2)^{\circ}$ $\beta = 65.347 (3)^{\circ}$ Block, colourless $\gamma = 78.884 \ (2)^{\circ}$ $0.22\times0.18\times0.16~mm$ V = 715.77 (6) Å³

Data collection

Bruker Kappa APEXII diffractometer	4088 independent reflections
Radiation source: fine-focus sealed tube	3267 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 295(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.920, \ T_{\max} = 0.963$	$k = -13 \rightarrow 13$
14857 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.241$	$w = 1/[\sigma^2(F_o^2) + (0.0931P)^2 + 0.2366P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4088 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.70206 (7)	0.26671 (6)	0.24015 (6)	0.0505 (2)
01	0.7232 (3)	0.1941 (2)	0.1217 (2)	0.0682 (6)
O2	0.5477 (2)	0.3641 (2)	0.2984 (3)	0.0705 (6)
O3	1.1581 (6)	0.5512 (4)	0.3706 (4)	0.1316 (14)
Н3	1.2640	0.5450	0.3519	0.197*
N1	0.8742 (2)	0.35733 (18)	0.17689 (19)	0.0434 (4)
C1	0.7297 (3)	0.1424 (2)	0.3853 (2)	0.0464 (4)
C2	0.7397 (5)	0.0001 (3)	0.3817 (4)	0.0705 (8)
H2	0.7350	-0.0317	0.3013	0.085*
C3	0.7567 (6)	-0.0952 (3)	0.4989 (4)	0.0831 (10)
H3A	0.7620	-0.1917	0.4982	0.100*
C4	0.7657 (4)	-0.0484 (3)	0.6162 (3)	0.0709 (8)
H4	0.7779	-0.1133	0.6946	0.085*
C5	0.7569 (5)	0.0929 (3)	0.6185 (3)	0.0705 (8)
Н5	0.7647	0.1236	0.6981	0.085*
C6	0.7364 (4)	0.1917 (3)	0.5037 (3)	0.0594 (6)
Н6	0.7275	0.2883	0.5064	0.071*
C7	0.8842 (3)	0.4756 (2)	0.2371 (2)	0.0449 (4)
C8	1.0560 (3)	0.4853 (2)	0.2018 (2)	0.0453 (4)
C9	1.1626 (3)	0.3694 (2)	0.1214 (2)	0.0413 (4)
C10	1.3442 (3)	0.3292 (3)	0.0597 (3)	0.0537 (5)
H10	1.4219	0.3825	0.0652	0.064*
C11	1.4065 (4)	0.2092 (3)	-0.0093 (3)	0.0594 (6)
H11	1.5275	0.1794	-0.0481	0.071*
C12	1.2929 (4)	0.1321 (3)	-0.0224 (3)	0.0615 (6)
H12	1.3393	0.0523	-0.0718	0.074*
C13	1.1125 (4)	0.1701 (2)	0.0358 (3)	0.0525 (5)
H13	1.0363	0.1171	0.0277	0.063*
C14	1.0485 (3)	0.2911 (2)	0.1073 (2)	0.0400 (4)
C15	0.7267 (4)	0.5750 (3)	0.3152 (3)	0.0650 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15A	0.6612	0.5303	0.4133	0.097*
H15B	0.6525	0.5993	0.2601	0.097*
H15C	0.7648	0.6594	0.3226	0.097*
C16	1.1300 (4)	0.5945 (3)	0.2393 (3)	0.0649 (7)
H16A	1.2413	0.6143	0.1580	0.078*
H16B	1.0488	0.6816	0.2494	0.078*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0467 (3)	0.0609 (4)	0.0548 (4)	-0.0134 (2)	-0.0299 (3)	-0.0024 (2)
01	0.0776 (13)	0.0891 (14)	0.0633 (11)	-0.0306 (11)	-0.0455 (10)	-0.0057 (10)
02	0.0440 (9)	0.0813 (13)	0.0859 (14)	-0.0033 (9)	-0.0311 (9)	-0.0021 (11)
03	0.224 (4)	0.128 (3)	0.104 (2)	-0.087 (3)	-0.104 (2)	0.0019 (19)
N1	0.0453 (9)	0.0437 (8)	0.0451 (9)	-0.0082 (7)	-0.0214 (7)	-0.0037 (6)
C1	0.0469 (10)	0.0499 (10)	0.0458 (10)	-0.0151 (8)	-0.0192 (8)	-0.0027 (8)
C2	0.100(2)	0.0570 (14)	0.0674 (16)	-0.0225 (14)	-0.0387 (16)	-0.0107 (12)
C3	0.122 (3)	0.0477 (13)	0.081 (2)	-0.0179 (16)	-0.043 (2)	0.0014 (13)
C4	0.085 (2)	0.0636 (15)	0.0549 (14)	-0.0142 (14)	-0.0242 (13)	0.0098 (11)
C5	0.094 (2)	0.0730 (17)	0.0455 (12)	-0.0156 (15)	-0.0283 (13)	-0.0044 (11)
C6	0.0810 (17)	0.0508 (12)	0.0519 (12)	-0.0122 (11)	-0.0300 (12)	-0.0066 (9)
C7	0.0538 (11)	0.0378 (9)	0.0425 (9)	-0.0039 (8)	-0.0198 (8)	-0.0041 (7)
C8	0.0566 (12)	0.0404 (9)	0.0430 (9)	-0.0100 (8)	-0.0218 (9)	-0.0055 (7)
C9	0.0468 (10)	0.0430 (9)	0.0384 (8)	-0.0086 (7)	-0.0207 (8)	-0.0031 (7)
C10	0.0458 (11)	0.0631 (13)	0.0558 (12)	-0.0105 (10)	-0.0229 (10)	-0.0058 (10)
C11	0.0522 (13)	0.0661 (14)	0.0540 (12)	0.0030 (11)	-0.0202 (10)	-0.0070 (11)
C12	0.0697 (16)	0.0582 (13)	0.0569 (13)	0.0096 (11)	-0.0272 (12)	-0.0205 (10)
C13	0.0667 (14)	0.0486 (11)	0.0529 (11)	-0.0072 (10)	-0.0307 (10)	-0.0137 (9)
C14	0.0472 (10)	0.0410 (9)	0.0363 (8)	-0.0073 (7)	-0.0210 (7)	-0.0023 (7)
C15	0.0632 (15)	0.0511 (12)	0.0709 (16)	0.0048 (11)	-0.0186 (12)	-0.0157 (11)
C16	0.0821 (18)	0.0538 (13)	0.0680 (15)	-0.0242 (13)	-0.0294 (13)	-0.0134 (11)

Geometric parameters (Å, °)

S1—O2	1.421 (2)	С7—С8	1.350 (3)
S1—O1	1.422 (2)	C7—C15	1.491 (3)
S1—N1	1.6619 (18)	C8—C9	1.439 (3)
S1—C1	1.757 (2)	C8—C16	1.499 (3)
O3—C16	1.396 (4)	C9—C10	1.389 (3)
О3—Н3	0.8200	C9—C14	1.394 (3)
N1-C14	1.412 (3)	C10-C11	1.371 (4)
N1—C7	1.425 (3)	С10—Н10	0.9300
C1—C2	1.373 (4)	C11—C12	1.377 (4)
C1—C6	1.382 (3)	C11—H11	0.9300
C2—C3	1.380 (4)	C12—C13	1.377 (4)
С2—Н2	0.9300	C12—H12	0.9300
C3—C4	1.368 (5)	C13—C14	1.391 (3)
С3—НЗА	0.9300	С13—Н13	0.9300
C4—C5	1.362 (5)	C15—H15A	0.9600

C4—H4	0.9300	C15—H15B	0.9600
C5—C6	1.388 (4)	C15—H15C	0.9600
С5—Н5	0.9300	C16—H16A	0.9700
С6—Н6	0.9300	C16—H16B	0.9700
O2—S1—O1	119.32 (13)	C7—C8—C16	127.6 (2)
O2—S1—N1	106.85 (11)	C9—C8—C16	123.9 (2)
O1—S1—N1	106.16 (11)	C10-C9-C14	119.9 (2)
O2—S1—C1	109.90 (12)	C10—C9—C8	132.5 (2)
O1—S1—C1	109.10 (12)	C14—C9—C8	107.59 (18)
N1—S1—C1	104.41 (9)	C11—C10—C9	118.6 (2)
С16—О3—Н3	109.5	C11—C10—H10	120.7
C14—N1—C7	107.57 (17)	С9—С10—Н10	120.7
C14—N1—S1	120.92 (14)	C10-C11-C12	121.1 (2)
C7—N1—S1	125.77 (15)	C10—C11—H11	119.4
C2-C1-C6	121.3 (2)	C12—C11—H11	119.4
C2-C1-S1	120.2 (2)	C13—C12—C11	121.6 (2)
C_{6} C_{1} S_{1}	118 42 (18)	C13 - C12 - H12	119.2
C1 - C2 - C3	119.1 (3)	C11 - C12 - H12	119.2
C1 - C2 - H2	120.4	C_{12} C_{13} C_{14}	117.2
C_{3} C_{2} H_{2}	120.1	C_{12} C_{13} H_{13}	121.3
C_{4} C_{2} C_{12} C_{2}	120.4	$C_{12} = C_{13} = H_{13}$	121.3
$C_4 = C_3 = C_2$	110.8	C_{13} C_{14} C_{19} C_{19}	121.3 121.3(2)
$C_2 = C_3 = H_3 \Lambda$	110.8	$C_{13} = C_{14} = C_{13}$	121.3(2)
$C_2 = C_3 = H_3 R$	120.1.(3)	C_{13} C_{14} N_1	107.57(17)
$C_{5} = C_{4} = C_{5}$	110.0	$C_{7} = C_{14} = N_{15}$	107.57 (17)
C_{3} C_{4} H_{4}	119.9	C7C15H15R	109.5
$C_3 = C_4 = H_4$	119.9		109.5
C4 - C5 - C6	120.9 (3)	ніза—сіз—нізв	109.5
С4—С5—Н5	119.5		109.5
С6—С5—Н5	119.5	HISA—CIS—HISC	109.5
C1 = C6 = C5	118.1 (2)	H15B-C15-H15C	109.5
С1—С6—Н6	121.0	03-016-08	112.6 (2)
С5—С6—Н6	121.0	03—C16—H16A	109.1
C8—C7—N1	108.74 (19)	C8—C16—H16A	109.1
C8—C7—C15	127.7 (2)	O3—C16—H16B	109.1
N1—C7—C15	123.4 (2)	C8—C16—H16B	109.1
C7—C8—C9	108.49 (19)	H16A—C16—H16B	107.8
O2—S1—N1—C14	-178.08 (15)	C15—C7—C8—C9	-177.5 (2)
O1—S1—N1—C14	-49.73 (17)	N1-C7-C8-C16	178.9 (2)
C1—S1—N1—C14	65.49 (17)	C15—C7—C8—C16	3.4 (4)
O2—S1—N1—C7	32.0 (2)	C7—C8—C9—C10	180.0 (2)
O1—S1—N1—C7	160.38 (18)	C16—C8—C9—C10	-0.9 (4)
C1—S1—N1—C7	-84.39 (18)	C7—C8—C9—C14	1.1 (2)
O2—S1—C1—C2	123.0 (3)	C16—C8—C9—C14	-179.8 (2)
O1—S1—C1—C2	-9.6 (3)	C14—C9—C10—C11	-2.3 (3)
N1—S1—C1—C2	-122.7 (2)	C8—C9—C10—C11	178.9 (2)
O2—S1—C1—C6	-55.4 (2)	C9—C10—C11—C12	2.2 (4)
01—S1—C1—C6	172.0 (2)	C10-C11-C12-C13	-1.4 (4)
N1—S1—C1—C6	58.9 (2)	C11—C12—C13—C14	0.7 (4)

supplementary materials

C6—C1—C2—C3	0.0 (5)	C12—C13—C14—C9	-0.9 (3)
S1—C1—C2—C3	-178.3 (3)	C12-C13-C14-N1	179.7 (2)
C1—C2—C3—C4	-0.8 (6)	C10-C9-C14-C13	1.8 (3)
C2—C3—C4—C5	0.4 (6)	C8—C9—C14—C13	-179.15 (18)
C3—C4—C5—C6	0.8 (5)	C10—C9—C14—N1	-178.74 (18)
C2—C1—C6—C5	1.1 (4)	C8—C9—C14—N1	0.3 (2)
S1—C1—C6—C5	179.5 (2)	C7—N1—C14—C13	177.9 (2)
C4—C5—C6—C1	-1.6 (5)	S1—N1—C14—C13	23.2 (3)
C14—N1—C7—C8	2.2 (2)	C7—N1—C14—C9	-1.5 (2)
S1—N1—C7—C8	155.38 (16)	S1—N1—C14—C9	-156.26 (14)
C14—N1—C7—C15	178.0 (2)	C7—C8—C16—O3	93.7 (4)
S1—N1—C7—C15	-28.9 (3)	C9—C8—C16—O3	-85.2 (3)
N1—C7—C8—C9	-2.0(2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3···O2 ⁱ	0.82	2.59	3.276 (5)	142
Symmetry codes: (i) $x+1$, y , z .				

Fig. 1

Fig. 2

